When selecting components for use in a gas system, certain factors must be considered which arise only because of the compressibility of gases. The nature of this compressibility is defined by the following two rules.
Boyle’s Law: The pressure and specific volume of a gas are inversely proportional to each other under conditions of constant temperature.
Charles’ Law: The pressure and temperature of a gas are directly proportional to each other when the volume is held constant, and the volume and temperature are directly proportional when the pressure is held constant.
Thus, a gas will expand to fill any container, and pressure and temperature will adjust to values consistent with the above rules. Gas flowing through valves and restrictors will be subject to an increasing specific volume as pressure drops take place, and temperatures will change as determined by the Joule-Thompson effect.
The combination of the above rules forms the basis for the “Equation of State” for ideal gases. This allows either pressure, temperature, or volume to be calculated for a known quantity of gas when the other two variables are known.
i.e. pV = mRT
(For values of the Gas Constant (R) see the Gas Properties table)
In general, the following comments apply to gas flow.
“The effect of pressure changes produced by a body moving at a speed faster than the speed of sound cannot reach points ahead of the body” (Von Karman, 1947).
This rule can be applied to pneumatic flow restrictors where the body is not moving but the flow velocity relative to the body can reach, or exceed, the speed of sound. Whenever the downstream pressure is low enough to produce Mach 1 at the restrictor throat, any effect of changes in the downstream pressure cannot reach points upstream of the throat. Thus, the flow rate will be independent of downstream pressure. This situation applies to a single orifice restrictor flowing air when the overall pressure ratio exceeds 1.89/1.
Source Cited: Von Karman, T. (1947). Supersonic aerodynamics-principles and applications the tenth wright brothers lecture. Journal of the Aeronautical Sciences, 14(7), 373-402.
Always verify flow calculations by experiment.
*There are many parameters to consider when determining V-Factor. Click here for more information.